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Abstract

Mized-critical systems are essential in modern computing, where applications of different criticality levels
share the same hardware platform(s) and/or resources. This paper explores the robustness and implementation
of mechanisms for such mized-critical systems utilizing RISC-V specifications and available open hardware.
In particular, the CVAG processor and OpenPiton System on Chip (SoC) are used. We also research the
mized-criticality suitability of core-to-core communication, resource management, and specific components like
performance counters, memory, and caches. Furthermore, we discuss future developments of mized-critical

systems utilizing open hardware.

1 Mixed-critical systems and
hardware

In mixed-critical(ity) systems, applications of different
criticality (typically with a focus on safety, but possibly
including security requirements [1]) , run on the same
hardware platform [2, 3]. Mixed-criticality can also
be realized by physically separating hardware (at a
slightly larger cost), often during production planning
and design, where the exact size of the critical part(s)
is not yet known, and a software solution is more
flexible. Mixed-critical systems have many use-cases
and applications in the modern computerized world [4,
5]. The simplest case for such a system is where one
critical and one less critical application rely on the
same platform (Fig. 1).
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Figure 1: Mized-criticality Platform view

1.1 Multicore considerations

Traditionally, the 60s’ time-sharing systems worked
out on the notion of individual processes concurrently
running on the same processor [6].

However, nowadays, with application processors hav-
ing multiple cores, a quite common way of separation
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is to assign one or several cores to each protection
domain. So, when mixed critical systems are repre-
sented on multicore hardware, a typical setup looks
like the one in Fig. 2, where cores are sharing multiple
resources, such as L2 caches, DRAM and PCI con-
troller(s). When configuring such shared resources, it
needs to be ensured that a high-criticality application
cannot be blocked by a lower-criticality one.
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Figure 2: Chip view with two cores, including shared

resources

Table 1 is a non-exhaustive list of referencing pa-
pers where resources are discussed by authors Fuchsen
(F) [7], Agirre et al. (A) [8], or Cerrolaza et al. (C) [9].

An individual core may consist of multiple com-
ponents, such as a processing pipeline, Translation
Look-aside Buffers (TLBs), or L1 caches. It could
even have tightly-coupled memory assigned, as de-
picted in Fig. 3. However, those resources are usually



Table 1: Discussion of shared resources in the literature
Description Author
Cache coherency/sharing F A
Memory bus F A
PCI bus F C
1/0 devices F
Interrupts F
Interconnect A (CoreNet)
Memory controller A
10 MMU A (PAMU)
Scratch memory C

exclusive to a core and thus cannot be the source of
resource-sharing conflicts.

Pipeline

Figure 3: Core view: exclusively allocated resources

1.2 Hardware implementations

For mixed-critical systems, viewed as a hardware plat-
form, it is possible to choose systems that are com-
pletely non-configurable. For example, the AAMP7
processor was such a design [10]. Also, an early RISC-
V multicore processor optimized for determinism was
developed in the T-Crest project [11]. As custom
designs are expensive to maintain, there seems not
to be a wide general adoption of such systems (i.e.,
AAMP7 and T-Crest). Recently, RISC-V is gaining
more momentum, and mechanisms relevant to mixed-
criticality are gradually being standardized for it via
RISC-V International. The survey at hand looks at
current RISC-V specifications and general-purpose
open-source RISC-V hardware for what is available
for resource management.

With regards to verifying separation claims, an ad-
ditional feature of RISC-V, it not only provides an
openly available instruction set architecture (ISA), but
also there exists an ecosystem of open-source hardware
implementations [12, 13], whose openly inspectable
design allows in principle direct verification of non-
interference, which is generally not so easy in typical
“closed-source” hardware where register-level design is
a trade secret.

2 RISC-V components for
mixed-critical systems

Our work is to collect information on resource manage-
ment or other mechanisms for mixed-critical systems
in the RISC-V specifications, and other open hard-
ware resources. So far, we have looked at the CVAG6
open core (RV64IMAC) and System on Chip (SoC)
demonstration based on OpenPiton [14], which is an
open-source, general-purpose, multithreaded, many-
core processor and framework, with CVA6. This par-
ticular SoC has been built for performance rather
than for mixed-criticality, but we are not aware yet
of any open hardware SoC explicitly targeting mixed-
criticality. We are using this SoC as a running example
for mixed-criticality mechanisms discussed below, and
for each component, a general state in the RISC-V
domain will be followed by the discussion of this SoC.
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Figure 4: OpenPiton CVAG6, from [14]

2.1 Performance counters

Quality of Service (QoS) performance counters can be
used for partitioning resources, e.g., counting memory
accesses [7]. Performance counters are defined in the
RISC-V Privileged Specification [15] Sect. 3.1.10 and
in [16, 17], using RCIDs (Resource Control IDs) and
MCIDs (Monitor Counter IDs). On the OpenPiton
SoC, we have CVA6 implementing Control Status Reg-
isters, i.e., CSR-based performance counters [18], in-
cluding the standard 64-bit clock cycle counter mcycle,
the retired instruction counter mstret as well as the six
generic 64-bit event counters, corresponding event se-
lectors, which can be enabled /disabled via the mcount
inhibit CSR. The supervisor and user access of per-
formance counters are allowed through enabling the
mcounteren and scounteren CSRs.

2.2 Memory

Dynamic Random Access Memory (DRAM) can be
assigned directly to cores, through asymmetric mul-
tiprocessing (AMP), or be shared among cores by
symmetric multiprocessing (SMP). In the latter case,
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sources of contention can be a shared memory con-
troller and a shared memory bus. This kind of con-
tention on the memory bus has been observed in |7, §].
The usage of the shared memory bus as a side channel
has been demonstrated in [19]. SMP also means that
we need the protection of synchronization mechanisms
(e.g., spinlocks or synchronization instructions such
as memory barriers) by access control, e.g., bound to
hart! ID. Whenever memory is shared, regardless of
AMP or SMP, Rowhammer [22] attacks may be used to
inspect adjacent memory cells. The analyzed Open-
Piton platform has shared DRAM. However, critical
task DRAM access can be shielded from interference
by non-critical tasks DRAM access using the MMU
(Memory Management Unit).

The DRAM Protection from Input/Output (I0)
devices, is described in [8] as the control of interactions
coming from IO devices by the I0 MMU (Memory
Management Unit) or the I0 PMP (I/O Physical
Memory Protection). RISC-V has I0 PMP for this [23].
The analyzed OpenPiton setup does not have this yet
though.

A Tightly-Coupled Memory / TCM is a per-core
memory and typically a core-exclusive resource, hence
there are no side effects. We observe that TCM access
is currently not standardized and having standard
control and discovery mechanisms for TCM would
be desirable towards building more portable system
software. Where TCM is indeed shared on a chip
between cores, then access control is needed. The
analyzed OpenPiton setup does not have TCM.

Caches store data from memory closer to the CPU,
removing the need for memory lookups. For exam-
ple, a cache can be on-chip whereas the memory is
DRAM. L2/13 caches are usually shared between dif-
ferent cores, to make memory coherency simpler. The
author in [7] has observed significant slow-downs of
performance due to cache sharing of L2 caches as well
as due to the coherency protocol. Similarly, authors
in [19] have demonstrated covert channels by caching
effects. Although caches can be partitioned, such a
feature is not yet standardized in RISC-V [24]. If
cache partitioning is supported, the redundancy (i.e.,
number of “ways”) in a shared cache is typically a
multiple of the number of harts sharing that level of
cache, so that a way can uniquely be assigned to this
hart. The translation TLB is usually not affected, as
it is usually CPU-local. In the analyzed OpenPiton
setup, the SoC cache hierarchy consists of three differ-
ent cache levels: L1 and L1.5 are part of the CVAG tile.

1 A hart is defined as a hardware thread, either one per core
without hardware multithreading or multiple harts per core
with hardware multithreading. The concept of a hart is a
hardware resource abstraction representing an independently
advancing RISC-V execution context with its own instruction
fetching [20, 21].
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The L2 cache is not partitioned, which would provide
an interference channel. Communication between L1.5
and L2 is done via SoC using a distributed, directory-
based cache coherency protocol. For mixed critical
systems, such a system demands higher levels of verifi-
cation such that protocol should handle memory errors
(e.g., single-bit flips) and for system reliability, it is
important to have fault-tolerance mechanisms. Addi-
tionally, it is important to look at side-channel attacks
(e.g., cache-based timing attacks) as it is important to
ensure cache coherence latency should not affect the
real-time behavior of the system.

2.3 Synchronization domains

For controlling TLB flushes, the RISC-V provides the
privileged instructions HFENCE.VVMA for use in
hypervisor mode and SFENCE.VMA for use in super-
visor mode [15], which guarantee that any previous
stores already visible to the current RISC-V hart are
ordered before subsequent instructions in that hart
(also implicitly) reference the memory management
data structures. However, if multiple domains are to
be kept apart (e.g., several operating system instances
running on a hypervisor), then it is more useful to be
able to ensure that memory synchronization (e.g., by
fence instruction) is restricted to selected actors (such
as operating systems, hypervisors), called “shareability
domains” on ARM [25], and this seems not have yet
been specified on RISC-V. Synchronization domains
are also not implemented on the CVAG yet.

2.4 Buses

Interconnects are connecting components and many
architectures are shared among cores. In principle, of
course, it is possible to have dedicated bus lines per
core, but the more common usage principle is to have
a hardware bus arbiter, and allow the OS control of
that arbiter, permitting the assignment of bandwidth
quota.

Regarding Inter-Core buses, state-of-the-art ranges
from undocumented behavior [8] to hardware-
configurable exclusive bus access (at the cost of re-
dundant hardware structures) [26]. In the OpenPiton
demonstration SoC the building blocks are tiles, where
each tile consists of a core, caches (L1.5/L2), a floating-
point unit (FPU), a CPU-Cache Crossbar (CCX) ar-
biter, a Memory Inter-arrival Time Traffic Shaper
(MITTS), and networks-on-a chip routers (NoCs).
These three NoCs are physical networks and packets
are routed using dimension-ordered wormhole rout-
ing. To ensure deadlock-free operation, the L1.1.5 cache,
L2 cache, and memory controller give different pri-
orities to different NoC channels. However, there is
no evidence that this SoC provides deterministic com-



munication where the timing of messages would be
predetermined and guaranteed, which is an important
safety-critical application.

2.5 Microarchitecture

Side-effects of speculative execution have been used
for the Meltdown [27] and Spectre [28] attacks. A
mixed-criticality-friendly microarchitecture could al-
low to fence off state of speculative execution, i.e.,
a reset of the speculative execution state has been
proposed as a fence.t instruction [29]. In the ana-
lyzed OpenPiton setup, the CVAG6 core is a 6-stage
RISC-V compatible processor core that supports an
efficient out-of-order execution, hence, fence.t sup-
port in CVAG is benefical if cores are scheduled to run
multiple security domains, and/or resource allocations
would change dynamically.

2.6 Positioning of the analyzed SoC

In the previous sections, different approaches to
stronger isolation on RISC-V platforms and their state
of specification have been demonstrated. In this sec-
tion, we illustrate how to build such systems in general.
Those approaches are not specific to RISC-V, but they
illustrate the usefulness of the aforementioned compo-
nents.

e A small system with hardware-dedicated re-
sources, such as a small monitor or safety applica-
tion, can use dedicated cores with tightly-coupled
memory.

e If tightly coupled memory is not available, e.g.,
another common technique for building mixed-
critical systems is to ensure that the entire mem-
ory fits into the core-local L1 cache.

e Larger systems using HW/SW performance moni-
toring are used in cases where the usage of shared
resources is unavoidable. The most common tech-
niques comprise of partitioning some shared re-
sources by hardware-enforced access control (e.g.,
cache partitioning) and other resources by OS-
controlled accesses, typically relying on perfor-
mance counters [7].

The OpenPiton demonstration SoC discussed above
as an example can be used for the second and third
approaches.

3 Results and further steps

We have outlined some ingredients that RISC-V cores
need to provide for mixed-critical systems and con-
cretely looked at the preconfigured OpenPiton setup.
Our looking at concrete RISC-V implementations for

support for mixed-critical systems is similar to [3], look-
ing at interrupts and also doing benchmarks on Noel-V,
whereas we are looking at a OpenPiton demonstration
and survey for building blocks such as performance
counters, and bus partitioning both on this platform
as specification-level developments. We aspire that
our survey will support future designers towards build-
ing future-generic, yet mixed-criticality-friendly open
hardware platforms. A further (obvious) step could
be to specify a more mixed-criticality-oriented demon-
stration SoC. Moreover, for a reliability assessment,
in the ISOLDE project [30], we are currently polling
partners for certification plans of their components
(“precertification checklist”). In terms of formal analy-
sis, on open-source components, in principle, a rigorous
analysis of non-interference by hardware information
flow tracking could be performed, e.g., proof-carrying
hardware [31].
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